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We have developed a computing procedure to study the dynamical
evolution of self-gravitating astronomical systems. It is based on a
stochastic model which is a generalization to the muftimass and
anisotropic case of the Fokker-Planck equation moment method. In this
paper we present the main characteristics of the mode! and the com-
puting procedure. We aiso present a practical application of the method.
© 1993 Academic Press. Inc.

L. INTRODUCTION

The dynamical evolution of self-gravitating N body
systems, with [arge A, such as star clusters, galactic nuclei,
galaxies and, rich galaxy clusters, is a long standing
problem in astronomy, which has only been partially solved
with the help of some fairly strong simplified assumptions.
The problem is, nevertheless, outstanding because there are
at present some open questions, such as the time scales for
the evolution of these systems and their dependence on their
particular characteristics, whose solution is fundamental in
order to correctly interpret some observations (luminosity
segregation in galaxy clusters, the origin of the huge energy
emission from active galactic nuclei, etc.). There is now a
general agreement that two different stages can be dis-
tinguished in the dynamical evolution of self-gravitating
systems: first, a fast phase, where the dynamics is controlled
by a collective potential (violent relaxation); then a slow
phase, where binary collisions play the prevailing role
{two-body relaxation).

From a theoretical point of view, there exist two main
categories of methods to follow the time evolution of seli-
gravitating systems: {1) N-body simulations [1-37 which
describe both phases of evolution; (2) statistical methods

based on the Fokker—Planck equation formalism to
describe the evolution of the distribution function. These
methods cover the two-body relaxation phase. The Fokker—
Planck equation can be numerically solved through dif-
ferent methods, such as Monte Carlo simulations {4-7],
direct integration of the equation in the orbit-averaged
approximation [8-127, and the moment method [14-21].

At present most authors agree that there exists a non-
luminous gravitating matter which could possibly dominate
the dynamical behavior of astronomical objects at large
scale, as implied by the increase of the mass-luminosity rela-
tion of these objects with the scale detected in astronomical
observations. The problem ol the microphysical nature of
these dark matter particles is an open question. In standard
cosmologies, an important fraction of the dark matter must
be non-baryenic [22, 237. In any case and irrespective of
their microphysical properties, dark matter particles are
likely to be much lighter than a typical star or galaxy, their
number density much higher than the typical densities of
stars in a cluster or in galaxies, or of galaxies in a cluster,
and to interact mainly gravitationaily.

The present-day generation of computers is unable to
properly simulate the dynamical evolution of a self-gravitat-
ing systems endowed with a background of light and abun-
dant particles by means of N-body techniques, We have to
resort to statistical methods. Unfortunately, the Fokker—
Planck equation is difficult to solve, so that works found in
literature on this subject have only taken into account some
simplified versions of the problem, such as a monomass
spherical configuration with isotropic distribution function
[6,9] (in the momentum space), anisotropic distribution,
and a monomass system [ 12, 157, or isotropic distributions
with a mass spectrum, either in the local [17] or in the
orbit-averaged approximations [ 11, 137].
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In contrast with this situation, any simulation of the
dynamical evolution of seif-gravitating systems which tries
to be somehow realistic, has to simultancously include
anisotropic distribution functions and a mass spectrum. The
approximation of isotropy fails because two-body relaxa-
tion effects give rise to an anisoiropy development, as has
been shown for a monomass system [ 12]. Concerning the
mass spectrum, astronomical self-gravitating objects are not
monomass systems because, apart from the background of
light particles, they are made of stars or galaxies of different
masses. This is particularly important in galaxy clusters,
where the mass of individual galaxies can vary by three
orders of magnitude or more.

We have developed a statistical model to study the evolu-
tion of self-gravitating systems which takes into considera-
tion, at the same time, the existence of a mass spectrum and
allows for anisotropy in the distribution functions. The
Fokker—Planck equation has been solved by means of the
moment method, which has been chosen because of its com-
putational economy. This aliows us to perform a detailed
analysis of the influence of the initial conditions on the
dynamical evolution of the system. At this moment, we have
applied our model to the study of the evolution of rich
galaxy clusters, The results of this study, presented else-
where [20, 217, suggest that some observational features of
these systems, such as the luminosity segregation and the
central decrease in the projected profile of the velocity dis-
persion for the most massive galaxies, can be interpreted as
due to the dynamical evolution in the two-body relaxation
phase and that the observed differences among different
clusters are a result of the different conditions at the onset
of this evolutionary phase, as described by different values
of the parameters of the model.

In this paper we present the numerical procedure
employed to solve the model and the main characteristics of
the code we have developed to this end. Also, in order to
underline the relevance of our assumptions, some results of
the computations are presented.

The paper is organized as follows: in Section 2 the multi-
mass anisotropic model for the evolution of self-gravitating
systems is described. Section 3 deals with the numerical
method to solve the model. In Section 4 we show some
results of the computations. Finally, Section 5 is devoted to
the summary and conclusions.

2, DESCRIPTION OF THE MODEL

Let us consider a system of self-gravitating particles com-
posed of N different subsystems of equal mass particles, m,,.
In each subsystem we define a distribution function,
fe(r, v, £). The dynamical evolution of these distribution
functions, due to binary collisions, is described .by the
Boltzmann equation with collision term:

afa dfu
R e A
af +¥v rf + r vf i CD“’

(1)

where @ is the total gravitational potential and df"*/dt| .,
gives the change of £%(r, v, ¢) due to binary encounters with
all the other particles in the system,

In order to simplily the problem, we assume that the
system is spatially spherical symmetric and axially sym-
metric around the radial direction in the momentum space.
If we define the average value of the function 4 in the
subsystem “a” by

E_[a”vAf"(r, v, {)

(Ara= {d3vfo(r.v, 1)

(2)

then the distribution functions are characterized by the
moments [ 14]

pa=< M3, (3)
iy = U, (4)
o= {lu—,)*>, (3)
Ba= 0= <{w), {6)
e = (u~i,)">, (7)
La=Llu—1,)", (8)
£a=0,3a; 9)

with u being the radial velocity and v and w the transverse
velocities. Due to the symmetries of the system, the odd
moments of the transverse velocities are zero:

<v2n+l>=<w2n+1>=0_ (10)

In Egs. (3)-(9) p, is the mass density of particles a, 4,
their mean radial velocity, «, and §, are their velocity dis-
persion in the radial and transverse directions (they are
identical in the isotropic case), £, is the skewness of the dis-
tribution and it measures the energy flux, {_ is the kurtosis
of the distribution, and &, is the excess coefficient, which
gives a measure of the peakness of the distribution relative
to a gaussian: when £, >0 there exists an excess of low
velocity type a particles with respect to a gaussian distribu-
tion, and conversely if £, < 0.

The moment method to solve the Boltzmann equation (1)
consists of taking its moments and to solve the resulting set
of moment equations instead of the Eq. (1). When this is
done, in the equation for the nth moment appears the
{n+11th moment, so that we are left with an infinite
number of moment equations. In practice, however, an
approximation is made and only a finite number are taken
into consideration by cutting the hierarchy. It is known that
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the third-order moment, &, plays an essential role in the
evolution of self-gravitating systems [14, 15, 24] and we
need to know the evolution of {, in order to have a
significant insight into the g, evolution, so that we have
to consider, at least, up to the fourth-order moment, .
Moreover, due to the anisotropy in the momentum space of
the distribution function, in the evolution equations for the
first four moments, some mixed moments of radial and
tangential components appear as well as moments of fifth
order, so that, in order to close the system, an additional
hypothesis concerning the physical nature of the dynamical
evolution has to be made. In accordance with Larson [14],
which studied the monomass case, we have assumed that
the distribution functions for any subsystem remain close to
a (isotropic) Maxwellian along the evolution, so that we can
expand the difference in Legendre polynomials and write
(we assume the /“ has been normalized to unity):

!
AV, w=g' i+ 3 an(V) Po(u),

n=>0

(11)

where V is the magnitude of the random velocity vector
relative to i, u is the cosine of the angle between this vector
and the radial direction, P,{(u) is the Legendre polynomial
of order n, and

g°(V)=(2ab,)” ¥ exp(— V?/2b,). (12)
where b, is a measure of the average kinetic energy of type
a particles in the Maxwellian distribution and has been

taken to be equal to the second moment of the f° distribu-
tion:

b, =2t s (13)

Because the second term in the r.h.s. of Eq. {11) has been
assumed to be always small, the expansions into Legendre
polynomials can be cut at a finite order /. If one wants to
properly represent all the dynamical characteristics of a self-
gravitating system, the expansion has to be led up to order
!=12 at least. Also, the coefficients a? can be considered to
be small corrections to g*(¥} and expanded as a power
series in V.

The simplest expressions for these coefficients leading to
nonzero values for the anisotropy o, — f,,, the heat flux &,
and the ¢, moment, and which satisfy Eq. (13) and the
conditions

favaur v, m=1 (14)

[avauvurvm=0=cu-a,5,  (15)

are
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2

.
as(v)= g (V) es 5. (18)

The ¢ coefficients can be calculated by introducing

expressions (16)-(18) into Eq.(ll) and then into
Egs. (3}-(9). The result is
5 &+ 4a.—Ba)/3
a=Z . 19
CO 8 b; ( )
. e,
ey = TS {20)
a &%, _ﬁa
=3 (21)

In previous works on the anisotropic moment method,
the population of target particles has been considered to
be isotropic in the momentum space {14, 16]. This con-
siderably simplifies the calculations. But for the multimass
case this approximation results in the inconsistency that the
total momentum is not conserved, so that it is not correct.
In this work, the expansion in Legendre polynomials has
been led up to order /=2 for both test and target particles.
In this way the total momentum is conserved (sce below)
and the anisotropy is treated in a self-consistent manner.

We would like to point out that, according to
Egs. (16)—(18), the ciosure hypothesis is verified as long as
the dimensionless functions ¢4 < 1 forn =0, 1, 2 at any time.
Within this approximation, the evolution equations for the
moments of the distribution function can be put in terms of
the first four moments given in Egs. (3)-(9) and the system
is closed. The resulting set of moment equations for each
subsystem is

dp, 16 _, _
£t —=— =0 22
o e L I (22)
du, _6ﬁﬂ+16[a]
at tia ar  p,or Pata
No,—p,) do di,
2P Fel T e 23
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da,  Oa, du, 140
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—[1-—=—)=== 24
- ¥ ( 3“(4) dt coll ( )
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To these equations we have to add the Poisson equation
for the gravitational potential, @(r),

li r’ dd
ridre| dr

Let us now consider the effects of binary encounters
between particles on the distribution functions, described
by the r.his. of Eq. (1}. In a system with a large number of
particles, these effects constitute a markovian stochastic
process [25] and can be mathematically described by the
Fokker—Planck equation, which in the local approximation
is [26]

N
]:471:6 Y pe
b=1

(28)
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where the diffusion coefficients are given by
{4v,5,= Z Iy— #,, (30)
b=1
62
31
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They represent the average change in the velocity of type

.a particles due to collisions with target particles of any type.
In Egs. (30) and (31) I, is given by

(32)

D Vi,
Fabs47rG2m§ln|: maz >“]

G(ma + mb)

with ¢ the Newton constant and D, the maximum impact
parameter, taken to be the largest dimension of the system.
The functions #,, and %, are the Rosenbiuth potentials
[27]. They are defined as

Hop =

ma+mb.{d3vr ifb(V) (33)

m, ¥ -V

qﬁszd%*fb(v) lv—v|. (34)

Expanding the distribution function for target particles,
f*, as explained above (Eqs. (11) and (16)-(18))up to [ =2,
we obtain the following expressions for the collision terms
{for further details on the calculation see Ref. [28].)

di, £,— &,
dt | con bg (1+m5,) Toslba+ ;) (33)
da,| ad cab,
dt |con ; { (b + b, )
m, b, —4b,
x(m—,, 5 _b")}
chb,
”Z R
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_ECzb bzla
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dt coll_ dal |con 5 ¢3ba E T,
y {(Zba+ Sb)(2(m, fm )+ 3)— 3bb}
(b, +by)
6 & c3by, (b(6(mafms) +1/2) = b,
5.2, % B e E S
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In these expressions T, is defined as
3 3/2
T,= (bo - bs) {40)

221)” Gy p, LD b, /G, + 1)1

it has the dimension of time and can be taken as a measure
of the relaxation time of test 4 particles colliding with a
background of target b particles.

381/104/1-6

3. NUMERICAL METHOD AND COMPUTING
CODE CHARACTERISYICS

The set of Egs. (22)-{27) with collision terms given by
Egs. (35)—(39), characterizing the gvolution of the moments
of the distribution function for type a particles, with
a=1,2, ., N, form a system of 6 x N nonlinear equations in
partial derivatives (in + and ¢} which, in addition to the
Poisson equation (28), describe the dynamical evolution of
the self-gravitating system. The equations for the different
particle types are coupled through the collision terms and
the Poisson equation.

We have developed a numerical code to selve the full set
of equations for an arbitrary number of mass subsystems.
The procedure we have used is similar to the numerical
methods employed in hydrodynamical problems with
spherical symmetry. As in these cases, an Eulerian scheme in
difference equations proves to be the most appropriate to
obtain a numerical solution of the system (22)-{(27).

The difference equations have been written in an implicit
form, backwards in time, in order to ensure the numerical
stability and to avoid the Courant condition [29]. This
allows us to use time steps considerably larger than in the
case of explicit methods.

In order to make the computations easier, it is advan-
tageous to replace Eqs. (22) and (28), introducing the
auxiliary variable M _(r}

ﬁM =4nrip, (41)
“or
e ampa, )

The grid points in r have been taken to be spaced at equal
logarithmic intervals A4 log r. In writing the difference equa-
tions, odd moments i,, ¢, and the auxiliary mass M ()
have been evaluated at the grid points r,, while the even
moments p,, %, B, and &, at points in between:
fiyp=1/2(r;,+r, ). In this way, the spatial gradients of
the different moments are centered with respect to the grid
points, where the moments gre evaluated.

There is a considerable arbitrariness to translate the
equations in partial derivatives into difference equations,
and only by putting different schemes to the test can one
find out which is the most suited to a particular problem.
The set of difference equations we have chosen is based on
previous studies [ 14] for the monomass case. They are

M{={(MY' —drr(pi_ ,pi 1 p) 0l At (43)
M{—M{_| 4n
EE Lot @
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In these equations a » superscript stands for the value of
the functions at time ¢,, while the other functions are taken
at time ¢, ,=1,+ At The subscripts indicate the grid
points r; (or the intermediate points between two adjacent
grid points, r,_,,,), where the moments are evaluated. In
order to evaluate the even moments p,, a,, and 3, at the
grid points r, in the expressions for the collision terms of the
odd moments (Eqs. {35), (38)), gecometrical interpolation
(a;=(a;_ a;,1,,)"*) has been used.

The expressions inside square brackets in Eqgs. (44)-(49})
mean that the difference expression for terms like #,8/6r
must be written in a different form, depending on the flux
sign, #,, in order to avoid numerical instabilities [30].
When the mass flux is inwards (i, < 0), the gradient must be
written according to the expression without square brack-
cts, while for those points where #,>0, the expression
inside square brackets must be used. Thus, it is necessary to
know the i, sign in cach grid point in order to properly
choose the expression for the gradients. However, if this is
done during the process of numerically solving the set of dif-
ference equations for one time step, the & functions could
change their sign from one iteration to another, giving rise
to problems of convergence. These problems can be avoided
by choosing the gradient structure according to the (&#7)"
sign, obtained in the previous time step, instead of the i?,
sign.

The difference equations (44)-(49) are used for
i=2,3,..,N,—1, where N, is the number of r grid peints.
Equation (43) gives us the M ,(#) functions at each time step.

In order to close the system of difference equations,
boundary conditions at the end points of the r interval must
be given. Two different situations can be envisaged at
F=Rpa =¥y,
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(a) Reflecting wall condition. This boundary condition
implies that the self-gravitating system is isolated and that
no exchange of matter or energy occurs across the wall. In
consequence, the total mass and energy of the system are
exactly conserved along the evolution. Mathematically, the
reflecting wall condition demands that the odd moments be
zero at R, (a3 =%, =0). This condition is somewhat
artificial, but it allows us to test the accuracy of the numeri-
cal calculation (see below).

(b) Absorbing wall condition. In a self-gravitating system,
energetic enough particles which reach the outermost region
of the cluster can escape the gravitational force. This
vaporization process is equivalent to placing a wall at
r=R_.. which absorbs any particle reaching this position.
Mathematically this is done by truncating the radial
velocity distribution function, at the boundary, for negative
velocities. A particular choice of this distribution results
in a particular relationship between the odd and even
moments at this point, which closes the system of difference
equations. In the absence of any information about this dis-
tribution, we have opted for the simplest choice: a truncated
normal distribution

exp[—v?2e,], if uz0

a 50

f(”)oc{o, if u<o. OV

The first- and third-order moments of these distributions
are

2 1/2
&”er(nvz) (a4 (51)
a 277!/2 (a?vr)lll. (52)

If we had considered a different distribution function, we
would have obtained different numerical factors, but still we
would have 74, oc (o} )" and &5, oc (a% )**. Fortunately,
the value of these numerical factors does not significantly
affect the subsequent evolution of the self-gravitating
system.

Concerning the center of the configuration {r,=r=0),
the reflecting wall condition has to be used because there are
not sources or sinks of matter, so the particles can cross the
center.

The difference equations (44)-(49) plus the boundary
conditions at r=0 and r=R,,, form a set of
Ny=6xNx N, nonlinear algebraic equations with the
same number of unknown functions, which has to be solved
at each time step.

The accuracy of the calculations increases with N,, but
the computing time required to solve a time step grows as
N, so that it is necessary to attain a compromise between

accuracy and rapidity of the calculations. In the model of
galaxy clusters we have computed, we have taken
N,=70—90, N=4— 10, giving 1680 < N . < 5400,

The standard Newton-Raphson technique has been used
to solve the set of algebraic equations. The Jacobian matrix
is of order N with many of its elements equal to zero, and
some others varying several orders of magnitude from the
central regions to the outermost regions of the system. To
calculate its inverse matrix we have used the Henyey [31]
elimination procedure, largely used in the numerical solu-
tion of the equations of stellar evolution [32]. With this
technique, instead of evaluating and storing all the elements
of the matrix at the same time, they are handled blockwise
so that, on one hand only the terms corresponding to the
functions evaluated at i—1, i, and i+ 1 grid points are
calculated and used simultaneously, and on the other hand,
we deal with numbers of the same order of magnitude
avoiding accuracy problems.

A particularity of our computational scheme is that the
elements of the Jacobian matrix have been numerically
evaluated at each time step. This has the advantage that it
gives an enormous flexibility to the code under possible
changes of the difference equations or boundary conditions.
This also aliows us to introduce new physical phenomena
with very few changes of the code. By contrast, the com-
puting time for each iteration grows. No relevant numerical
instabilities have been found due to this numerical com-
putation of the Jacobian matrix.

The trial solution for the Newton—Raphson method at
each time step has been obtained by extrapolating the
solution found for the two previous time steps. Linear and
linear-logarithmic extrapolations have been used for the
odd and even moments, respectively.

We consider that the solution to the nonlinear algebraic
difference equations is achieved when the relative correc-
tions to the even moments &p{/p7, da;/xf, and of7/f7, at
every grid point, are less than 1075, No more than seven
iterations are necessary, in the worse cases, to achieve this
accuracy. Actually, only three to five iterations are needed
to get an accuracy better than 10~% in most of the grid
points.

The time step At between two consecutive models has
been taken to be variable. Its choice depends on how fast the
convergence of the previous model is attained. This rapidity
has been measured by the number of iterations needed and
the maximum corrections to the trial solutions at the final
iteration.

The computing code makes it possible to consider an
arbitrary number of different mass subsystems, limited only
by the storage capacity of the computer where it runs. The
storage requirements grow like N2 For a model with N=4
and N,=100, this requirement is approximately 150K
words in double precision.

The CPU time per iteration depends on the architecture
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TABLE]

CPU Time for a Newton—Raphson Iteration, Using the Henyey
Technique for the Inversion of the Jacobian Matrix, ih Two
Different Computers as a Function of the Number of Mass
Subsystems

IBM-4381 (scalar) CRAY-XMP/l4se (vectorial)

N double precision single precision
2 3.ds 04s
4 20.0s 1.25
8 130s 4.65

10 24ls 7.68

of the computer onc uses. In computers with scalar
processing, it grows as N3, while in vectorial computers, it
grows as N> when the code is fully vectorized. We have run
the code in two different machines, one scalar (IBM-4381),
with 0.98 Mftops double precision linpack, and the other
with vectorial facilities (CRAY-XMP/14se) with 53 Mflops
linpack, with a CFT77 fortran compiler. The times per itera-
tion for a model with different mass subsystems and N, = 50
in both computers are given in Table 1. The compulting time
per iteration grows linearly as N, in scalar as well as in
vectorial computers.

The accuracy of the code has been tested in two different
ways: (a) First, its ability to maintain unchanged along the
evolution those physical magnitudes which are invariants
with a perfect reflecting wall boundary condition (such as
the total mass of the system and the total energy). Our code
fulfilis these requirements, with a difference in the total mass
satisfying the inequality |AM /M ;| < 10~ '¢. The conserva-
tion of the total energy, £, is less accurate. For the most
part of the time evolution, |[AE+/Ey| $£10~% (b) We have
also compared the results produced by our code with those
produced with other codes found in literature, in the case of
no mass spectrum [ 14, 157 and with a mass spectrum [337].
In both cases, using the same moment equations and the
same initial model, the results agree quite well.

4. A PRACTICAL APPLICATION: RICH
GALAXY CLUSTERS EVOLUTION

The system of differential equations in partial derivatives
(44)—(49), with collision terms given by (35)-(39) can be
used to study the dynamical evolution of any self-gravitat-
ing system with spherical symmetry in the two-body relaxa-
tion phase, once the initial conditions and the mass-spec-
trum are given. In order to show the physical relevance of
the hypothesis of our model (namely, the existence of a mass
spectrum, with a population a very light particles, and the
anisotropy of the distribution function in the momentum
space), here we briefly present some results of the computa-

tion of rich galaxy clusters evolution using this numerical
method. For a more detailed analysis the reader should
consult Refs. [20, 21].

As the initial configuration of our system we have taken
the output of the violent relaxation phase [ 34 ]: the distribu-
tion function is nearly Maxwellian, so that no anisotropy
will be initially present and the odd moments will be zero.
Moreover, during the violent relaxation stage, the cluster
can be considered as collisionless, so that no mass segrega-
tion will exist in the initial model. Among all the possible
configurations fulfilling these requirements, King models
have been chosen [35] because they properly fit the present
density profiles of rich clusters of galaxies and we know that
dynamical evolution impiies a contraction of the core
radius, R,, but not a change in the slope of the density
profiles, except for the more massive galaxies [21 ]. The core
radius R_ is defined by the equation g(R_.) = (0)/2, where
a(s) is the projected galaxy number density. The initial King
models are characterized by three parameters: (i) the initial
core radius R, {ii) the dimensionless gravitational potential
at the cluster center W, and (iii) the total cluster mass M .

The mass spectrum of galaxy clusters i1s not observa-
tionally known. However, their observed diflerential
luminosity functions is well fitted by the Schechter {36]
function:

- L L
N(L)dL « (%) exp (LZ;) d(F), (53)

where y ~ 5/4 and L* =4.7 x 10°L.

Assuming that the mass-luminosity ratio, M/L, is the
same for all galaxies and that, moreover, it remains
unchanged along the cluster evolution, we obtain the
Schechter mass-spectrum

N(m) dm o (%)? exp(ﬁ%) d(%) (54)

where m* is the mass of galaxies with luminosity L* and is
fixed by the M/L value, which is another free parameter of
the model. The fifth free parameter is the fraction of the
cluster total mass which is in the form of very light particles:

M.
n=— o (55)
T

The galaxy mass range in our models has been taken to
be

0.025 <m/m* <21, (56)

This mass interval has been divided into ¥ = 3 subintervals

of the same length in a logarithmic scale. All the particles in
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each subinterval have been assumed to have the same mass,
equal to the average mass value in the corresponding subin-
terval. These mass groups have been termed =1, 2, and 3
in order of decreasing average mass, and ¢ = 4 stands for the
very light particles subsystem.

The moment equations can be made dimensionless by
taking as variables X=r/R_ and t=#T,, where T, is
defined as

T _ n (MT/umﬂx)Uz Ri."z
P60 G ¥ In [2n/3NX e M/ e * )]

{57)

and measures the relaxation time at the cluster center in the
King model [25 35]. In the above definition X, =
Rupax /R, and p(X) = 41/9 X2 dW/AX (rmas = B(X rax)).
Dimensionless initial models are then characterized by
the mass spectrum, the W/, parameter and the effective
number of galaxies: Ny=(1—#y)M;/m* Their interest
rests on the fact that they are defined by a set of three
parameters instead of five and that the general features of
the evolution are best described in a dimensionless language.
The most fundamental of these features is that the final
stage of the dynamical evolution is always a situation of
gravothermal catastrophe, characterized by an increase of
the central density which becomes higher and higher in
shorter and shorter time intervais. In multimass systems,
the lack of enerpy equipartition among massive and light

Logla/al0))

FI1G. 1.

particles results in an acceleration of the process of gravo-
thermal catastrophe relative to the monomass case. The
most massive galaxies decouple from the lighter ones and
they evolve independently as a monomass system to their
collapse, which, in turn, induces the collapse of lighter
galaxies.

The effects of the presence of a population of very light
particles in the cluster dynamics, are well expressed by the
o, (X, 7) profiles. In Fig. I we show the profile correspond-
ing to the most massive group of particles, «,, for y =0 (no
light particles) and for n=0.9. Values for the parameters
W,=9 and N =625 have been chosen to draw these
figures. The time variable T has been normalized to the
collapse time, ©__, that is defined as the time needed for the
density to become infinity at the center of the cluster. Our
code is able to follow the evolution up to t/z. = 10773,
which is equivalent to an increase in the central density for
the most massive particles, relative to its initial value,
greater than 105 At this time, the dimensionless functions
¢®~1 (Eqgs. (19)-(21)) and, as we mentioned in Section 2,
the approximation made to close the system of moment
equations no longer hoids.

It is clear from these figures that the central cluster
regions travel along their evolution- by three different
phases: first, a quick o decrease, more pronounced for high
# values; then, an interval where «, is roughly constant, and,
finally, a very fast increase of «,. A central decrease of the «,
profile when n =09 is apparent from Fig. lb. Also a,

b
5 n=0.9
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Radial velocity dispersion profile for the most massive group of particles as a function of the dimensionless variables X =r/R_.and t=¢/T,,,

in units of the initial central value (0). The initial model is a King model with W,=9 and N ;=625 (a} Madel with no background of light particles

(1 =0Y; (b) Model with 5 =09.
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Anisotropy factor (2ff, /a;) for the most massive group of particles as a function of the dimensionless variables X and  for the same models

as in Fig. I: (a) Model with  =0; (b) Model with  =09. The initial model in both cases is isotropic.

decreases slightly, while o5 and », remain approximately
constant along the evolution. This is a feature which is
found in the observed projected velocity dispersion profiles
of some galaxy clusters [21]. This central decrease of the a,
profile does not occur when light particles are not present
(Fig. 1a). This is an important difference between the =0
and n = 0.9 case. Physically, the evolution of the o, (and §,)
moments are caused by the competition among four
processes: energy equipartition, convective and conductive
heat transport, and the contractions and expansions of the
configuration. The kinetic energy loss of the more massive
gaiaxies which characterizes the first phase of the evolution
is caused by the tendency to energy equipartition. As a con-
sequence, massive galaxies concentrate toward the center,
gaining kinetic energy, which is again transferred to the
light galaxics and particles. This is the second phase. When
collisions become ineffective to transfer this kinetic energy,
the tendency to energy equipartition is broken and the
gravothermal catastrophe begins,

In self-gravitating systems, an anisotropy develops as a
consequence of the evolution in the two-body relaxation

phase. In Fig. 2 the evolution of the anisotropy factor,
28, Ja, of the most massive group, for =0 and n =0.9, has
been depicted. The central zones (X <0.1) remain always
isotropic, but an anisotropy appears in the outer regions.
Massive galaxies preferentially move in the transverse
direction in the interval 0.2 < X < 5. Lighter galaxies in this
region present no changes for 5 = 0.9 nor a depletion of the
anisotropy factor when n =0.

5. CONCLUSIONS

In this paper we have presented a description of the
stochastic model we have developed in order to study
the dynamical evolution of self-gravitating astronomical
objects. The model is a self-consistent generalization to
the multimass and anisotropic case of the Fokker-Planck
equation moment method [14].

We have also made a detailed description of the comput-
ing code built for numerically solving the equations of the
model. More realistic situations, with the inclusion of other
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physical processes rather than those that are purely gravita-
tional, can also be treated within the framework of this code.

In order to show the physical importance of the assump-
tions in which the model is based (mass spectrum and
anisotropy in the velocity distribution) we have presented a
practical application of the code to the solution of various
models, describing the dynamical evolution of a galaxy
cluster with, and without, a continuous background of
light particles. The numerical results show that the mass
spectrum and the anisotropy in the velocity distributions
have a remarkable effect on the dynamical evolution of these
kinds of physical systems so that their inclusion is necessary
if one wants to obtain a realistic model.
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